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Abstract An ab inirio fully relativistic approach to the calculation of conduction-electron g- 
factors in metals is presented. The electron magnetic moment tensor is determined by evaluating 
the matrix elements of the relativistic magnetic moment operator with the wave functions of 
the fully relativistic linear muffin-tin orbital LMTo method. Calculations of the g-factors for 
cyclotron orbits in noble m e a  using lhis new approach resolve a long-standing problem in the 
interpretation of the experimental data.. 

1. Introduction 

The elecaonic g-factor is a quantity of fundamental importance for describing the response 
of a non-magnetic metal to an external magnetic field. Recent advances in experimental 
techniques for studying the de Haas-van Alphen (DHVA) quantum oscillations in metals 
have made it possible to obtain reliable values for the cyclotron-orbit-averaged gc-factors 
(for a review, see [ 11). 

The spin-orbit interaction is responsible for deviations of the g-factors in metals from the 
free electron value (gs = 2.0023 including quantum-electrodynamical corrections). Even 
though quasiparticle states in a magnetic field are Landau levels rather then states with 
well-defined k, their splitting in the framework of Fermi liquid theory [2] 

is an average of the electron magnetic moment tensor g,(k) over a cyclotron orbit on the 
nth band at the Fermi surface, renormalized by quasiparticle interactions. 

Previous theoretical calculations of the g,-factors in noble [3,4] and transition [5 ]  metals 
were unable to account for the experimentally observed anisotropy. These calculations 
employed a scalar-relativistic band-structure model using an effective LMTO Hamiltonian 
based on the Pauli equation. Recently, Hjelm and Calais [6] attempted to improve this 
calculational scheme by including the perturbation from the magnetic field in a self- 
consistent cycle. This shifted the calculated values of the g, factors without significantly 
affecting their anisotropy. 

The scalar-relativistic LMTO Hamiltonian for an electron in a uniform magnetic field H 
is usually taken in the form 
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where the spin-orbit term is 

(6 is a parameter of the spin-orbit interaction) and the external field is introduced to first 
order through the Zeeman term 

Other relativistic terms and terms quadratic in H are neglected. 
In the absence of spin-orbit interaction, the electron in the magnetic field has an isotropic 

magnetic moment due to spin with the free-electron value of g,,uB. The effects of spin-orbit 
interaction are to induce an orbital magnetic moment and to modify the value of g,. 

In a scalar-relativistic treatment; the Kramers-conjugate states are represented by a 
product of orbital and spin functions. Matrix elements of the orbital part of the Zeeman 
operator in (4) between such orbitally non-degenerate states are identically equal to zero. 
so the g-shift calculated from scalar-relativistic band models [3,4,5,6] arises entirely from 
the orbital moment induced by the spin-orbit term (3). It contains no contribution from the 
spin-orbit-induced correction to the free-electron value of g,. 

This spin-only g-shift is given to a leading order of perturbation theory by 

g"kf -= I+eC I& * ($m(k)ILI*n(k))12 
4 m#n E"(k) -&(A) 

where & is a unit vector specifying the direction of the magnetic field, and ( E ,  - E,) is 
the difference in energy between the given state n and a state m with appropriate symmetry 
[7]. It can be neglected whenever the spin-orbit interaction is sufficiently small that Bloch 
states for any given duection of spin quantization are almost pure spin states. 

MacDonald [SI has analysed the trends in the g-factor variation among transition metals 
in the tight-binding approximation, using canonical d-bandwidths and spin-orbit parameters 
Ed, so that his calculations set a lower bound on the spin-only g-shift. A comparison between 
his results and the results of scalar-relativistic band calculations [5]  demonstrates that even 
at moderate spin-orbit interactions the shift due to the orbital moment and the spin-only 
shift are of comparabIe magnitude. Neither the band nor the tight-binding approach alone 
yields a complete description of the g-shift. 

An additional complication arises from the fact that the expectation value of the Zeeman 
operator is not gauge-invariant. According to Moore [9], its gauge invariance can be retained 
by adding further terms to the Hamiltonian as it was done, for example, in the work of 
Singh er Q/ [lo] on the g-factors of ferromagnetic metals. They estimated the correction 
due to lack of gauge invariance as typically being about 5% of the spin-only shift. 

This paper presents a new method for the calculation of g-factors in metals. Such a 
calculation must involve a proper treatment of the spin-orbit interaction and the interaction 
of spin with the field, as well as including the external magnetic field in a gaugeinvariant 
manner. These requirements are met by carrying out a relativistic calculation based on the 
Duac equation. 
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2 Theory 

In a fully relativistic treatment, spin is not a good quantum number and the eigenstates can 
not be expressed as product states. Because of spin-xbit interaction, the magnetic moment 
of the electron acquires a tensor character [2]. If the magnetic moment operator is defined 
from the Dirac equation, the requirement of gauge invariance is automatically satisfied. The 
Hamiltonian for a Dirac electron in an external magnetic field with vector potential A is 
[I11 

'F1= Ho - e a .  A (6) 

where 3 t ~  is the Dirac Hamiltonian in the absence of external field and a are the Dirac 
matrices in the standard representation in terms of the Pauli matrices n, In this relativistic 
formulation there are no explicit terms quadratic in magnetic field. Therefore it includes, 
among other effects, the influence of the Az-term neglected in a scalar-relativistic treatment. 
Using the symmetric gauge for the homogeneous field, the relativistic magnetic moment 
operator can be written (in the atomic Rydberg system such that A = 2mo = 1) as 

- (a'H/aH) = ipBcr (7) 

The eigenvalues of the relativistic magnetic moment operator g,(k) were evaluated using 
Dirac wave functions of the relativistic linear muffin-tin orbital ("U) method [12] in the 
atomic-sphere approximation (ASA). Self-consistent charge densities were obtained using 
the relativistic Dirac-Hartee-Fock-Slater atomic program to construct the initial charge 
densities. The exchange-correlation part of the potential was included in the local-density 
approximation using von Barth-Hedin parametrization [I 31. 

By analogy with its non-relativistic counterpart [14], the orthonormalized wave function 
of the Bloch electron is given in the form of a one-centre expansion 

in terms of the basis functions 

K is the relativistic quantum number, g&) and f J r )  are the large and small component 
solutions of the coupled system of radial Dirac equations at some appropriately chosen 
energy E,,  the dot denotes their energy derivatives at E,, E,  are the eigenvalues 
and C&(E,, k) are the eigenvectors of the R L ~ ~ T O  generalized eigenvalue problem, and 
l l r r p , w ~ p ~ ( k ) ,  Q,,,c,,r(k) are the matrices of expansion coefficients. The relativistic Dirac 
spinors include mixed angular and spin functions 

x ~ ( + )  = C ( ~ ~ ~ ; ~ L - S , S ) ~ , , - ~ ( P ) X ( ~ )  
s=*; 

that are the eigenfunctions of the spin-orbit interaction operator [ll]. 
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The matrix elements of the relativistic magnetic moment operator (7) on these wave 
functions can be written as 

in terms of the radial integrals 

where S w  is the WignerSeitz radius, gd g,, g: = g., etc; the angular integrals 

The angular integrals involving spin-angular functions can be easily evaluated using the 
Racah algebra of irreducible tensor operators [ 151. A complete derivation of expressions 
for matrix elements, selection rules and tests of convergence and accuracy will be presented 
elsewhere. 

To find the eigenvalues g,,(k) of the relativistic magnetic moment operator for any 
band state, the operator must be diagonalized for the pair of Kramers-degenerate eigenstates 
(U, U ' )  (no additional degeneracies are supposed). The solutions of the eigenvalue equation 
for each component gn(k )  are simply 

(16) 

since due to Hermicity of the operator (7) its matrix elements on Kramers-conjugate states 
have the symmetry properties 

gUO'(k) = g ~ ' ~ ( k )  g"<(k) = -gU'C'(k). (17) 
The g-factor for a cyclotron orbit in a given band gebmd is calculated by taking the 

I12 
g.(W = * ( l g m *  + k,""'(k)I*) 

time-weighted average of g-factors &(k) = h . gn(k) around the orbit 

g:md = $dk e gf(k)u;l(k)/fdk E u;'(k) (18) 

where & is a direction of the magnetic field perpendicular to the plane of the orbit, and UL is 
the component of the electron velocity in that plane. The value that is directly comparable 
with experimental data is the &-factor renormalized by many-body effects 

~ (19) g,* = SxcgPd . ~~ ~~ ~ ~~ 

1 + A? 

where S, is the exchangecorrelation (Stoner) enhancement factor and 1 + LEp is the 
electron-phonon enhancement factor 131. 
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3. Results 

Table 1 compares present and previous theoretical values for the g,-factors for principal 
orbits on the Fermi surfaces of noble metals with experimental values deduced from DHVA 
data. The noble metals copper, silver and gold have topologically identical Fermi surfaces. 
Even though the anisotropy of the g,-factors should be larger in gold due to the stronger 
spin-orbit interaction, similar relative values are expected on corresponding orbits in the 
different metals. 

Table 1. Band theoretical and experimenlal values of gc-factors for principal orbits in noble 
metals. After correcting for the mass enhancement from cyclobon mass data, the ratio yields 
the Stoner enhmcement Sxc. 

6% A& $““d I t g p  g y ‘  
Orbit ([31) (equation (5 ) )  (present work) C31) ([W S., 

Cu E ( I O 0 )  2.13 2.16 1.052 2.24(5) 1.09(3) 
R(100) 2.05 2.05 1.071 2,08(5) 1.09(2) 
D(110) 2.09 2.08 1.091 2.11(2) I.lO(l) 
E(111) 2.12 2.10 1.034 2.12(2) 1.04(1) 
N(111) 2.04 -0.02 2.04 1.198 1.90(4) 1.12f2) 

Ag E(100) 
R(100) 
D(110) 
E(111) 
N(l l1)  

Au B(100) 
R(100) 
D(110) 
B(111) 
N(111) 

2.09 
2.04 
2.07 
2.10 
2.01 

2.40 
2.13 
2.19 
2.43 
2.20 

~ 

2.10 
2.04 
2.05 
2.08 

-0.02 2.00 

2.35 
2.11 
2.12 
2.28 

-0.17 2.05 

1.057 2,14(20) 1.07(10) 
1.109 
1.122 2.24(10) 1.22(5) 
1.041 2.43(15) 1.21(7) 
1.264 1.92(5) 1.21(3) 

1 . 1 1 1  2.29(4) 1.08(2) 
1.103 2.26(10) 1.18(5) 
1.167 2.03(20) l.Il(10) 
1 .os 1 2.42(13) l.Il(7) 
1.98‘ 1.15(5) l . l l n  

Best estimate, see text. 

However, two independent scalar-relativistic calculations [3,4] both yield g,-factors on 
the neck orbit in gold that are larger than those on the rosette and dogshone, whereas in the 
other noble metals the g, values on the rosette and dogsbone are intermediate between the 
belly and the neck. Eriksson ef a1 [4] have attribute& this discrepancy to the incomplete 
treatment of spin-orbit interaction within the scalar-relativistic hand model. 

The calculation of the spin-only correction to g, requires the evaluation of the 
perturbation theory expression (5) for all k-points around the extrema1 cyclotron orbit. 
However, it can be assumed to be constant for all points on the neck orbits in the noble 
metals due to the relatively small area of the orbits. It is therefore easy to estimate the 
value of the spin-only shift using the spin-orbit splitting and band gap calculated at the 
centre of the orbit, which is the symmetry point L (see table 1). The scalar-relativistic 
band calculations yield a positive g-shift due to the orbital moment, AgC = 0.20, on the 
neck orbit in gold, while a perturbation theory calculation yields a negative spin-only shift 
Ag, x -0.17, resulting in the value g, sz 2.03. 

The results of the present fully relativistic calculations of orbital g,-factors for gold are 
consistent with those for the other noble metals. Our calculated value of g, = 2.05 on the 
neck is in good agreement with results of scalar-relativistic calculations combined with the 
perturbation theory estimate of the spin-only g shift. 
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By comparing the experimental orbital g-factor with a reliable band value, the orbital 
average of the Stoner factor S, can be deduced. In order to extract S,, from the data in 
table 1, we have adopted electron-phonon enhancement factors obtained [3] by fitting a 
KKR band model to experimental Fermi-surface data. 

In gold, the data for the belly, rosette, and dogsbone orbits yield no evidence for 
significant anisotropy in S,,, whereas the data for the neck orbit yield a value less than 
unity, which is unphysical. The best estimate of S, deduced from the other orbits, 
S,, = 1.1 lkO.02, is in reasonable agreement with the result of the first-principles calculation 
by MacDonald et al [ 161 of the average enhancement S,, = 1.06. If this estimate is supposed 
to apply also to the neck, then the data imply that 1 + A:' = 1.98 ?c 0.02. Independent 
evidence that the band calculation seriously underestimates 1 + A? in gold comes from 
the interpretation of acoustic attenuation data, on the basis of which it has been found that 
1 + A:' % 1.90 [3]. 

In conclusion, a new fully relativistic method for calculating conduction-electron g- 
factors in metals has been presented. Our approach, which is based on the Dirac equation, 
offers a natural framework for the calculation of g-factors, automatically providing a proper 
treatment of the modification of the electron magnetic moment by spin-orbit interaction and 
satisfying the requirement of gauge invariance. It is shown that all previous calculations of 
band g-factors neglected contributions that are significant on~the neck orbit of gold. 

By comparing band g-factors with experimental g-factors (which are renormalized 
by many-body effects) it is possible to extract valuable information about many-body 
interactions at the Fermi surface. The present calculations yield a consistent interpretation 
of the gold data, in which the Stoner enhancement is isotropic and in which the many-body 
enhancement of the cyclotron mass on the neck orbit is much larger than previously deduced 
from cyclotron mass data, but in line with the results of acoustic attenuation studies. 

The present approach is being extended to transition metals, where a complex 
configuration of energy bands and strong spin-orbit interaction are expected to make fully 
relativistic g-factor calculations especially effective. 
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